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LElTER TO THE EDITOR 

Heat kernel expansion for fermionic billiards in an external 
magnetic field 

Michel Antoine, Alain Comtett and Marc Knecht 
Division de Physique ThtoriqueS, Institut de Physique Nucltaire, F-91406, Orsay cedex, 
France 

Received 5 June 1989, in final form 14 September 1989 

Abstract. Using Seeley’s heat kemel expansion, we compute the asymptotic density of 
states of the Dirac operator coupled to a magnetic field on a two-dimensional manifold 
with boundary (‘fermionic billiard’). Local boundary conditions compatible with vector 
current conservation depend on a free parameter a. It is shown that the perimeter correction 
identically vanishes for a = O .  In that case, the next-order constant term is found to be 
proportional to the Euler characteristic of the manifold. These results are independent of 
the external magnetic field and of the shape of the billiard, provided the boundary is 
sufficiently smooth. For the flat circular billiard, the constant term is found to be -+, in 
agreement with a numerical result of Berry and Mondragon. 

In a recent work, Berry and Mondragon (1) have considered a Dirac Hamiltonian 
describing a massless spin-half particle moving on a finite domain in the plane. 
Hard-wall local boundary conditions obtained from the requirement that no current 
flows outwards from the billiard imply that the system does not possess time-reversal 
symmetry and is thus an interesting model in the context of quantum chaos. In order 
to extract the fluctuating part of the spectrum which in this case is shown to be 
distributed according to the statistics of the Gaussian unitary ensemble, the authors 
provide an explicit expression for the semiclassical integrated density of states. Surpris- 
ingly enough, the perimeter correction vanishes in this asymptotic expansion and 
numerical calculation suggests that the next-order constant term is -A. The purpose 
of this work is to extend this problem to the more general case of a two-dimensional 
curved manifold M bounded by a multiconnected smooth curve dM with some possible 
coupling to an external magnetic field. In contrast with Berry and Mondragon, who 
used the Balian-Bloch formalism, our approach is based on Seeley’s heat kernel 
expansion [2]. 

Let g,, be the metric tensor of the Riemannian manifold M and g = det g,, . At 
each point of M, we introduce a zweibein e; such that 

e;ez = g,, 

{ y o ,  y b }  = -2aab 

g w u e l e f :  = aab. 
We consider Euclidean anti-Hermitic gamma matrices that satisfy 

( y a ) +  = - ya. 
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In two dimensions, one representation of these matrices is found in terms of the Pauli's 
U matrices 

y 2  = iu2 y 5  = iy1y2= u3. (3) 

y"ez D@+(x) = E$(x). (4) 

1 1  y =ia 

The dynamics of the spin-f particle is governed by the Euclidian Dirac equation on M: 

The covariant derivative for the spinor D, = a ,  + r, - iqA, takes into account the 
curvature of the manifold and the external magnetic field through the spin connection: 

r =--[ y', y b ] e a * Y ~ c e t  ( 5 )  

r r  = -r; V,et = ape; - r;, ,e:  (6) 

and through the vector potential A, to which the particle is coupled via its charge q, 
respectively. 

Hermiticity of 0 = e'"y" D, is guaranteed provided the spinor +(x)  obeys the 
following class of boundary conditions: 

npelya+(x) = y 5  e"~'*(x) on aM (7) 

with a a free real parameter and nr  the inward normal vector on aM. For a = 0, one 
recovers the boundary condition considered by Berry and Mondragon [I]. One can 
then easily show that the vector current is conserved: 

n p ( ~ + y a e ~ ~ )  = O  on aM. (8) 

The axial symmetry, however, is explicitly broken, even for vanishing external field, 
in agreement with a theorem of Atiyah et a1 [3], which states that preservation of axial 
symmetry requires non-local boundary conditions. The same statement holds for 
time-reversal symmetry. 

Introducing the projector 

p+ = %I + r5(rn)) 
equation (7) can be rewritten in a more transparent way, namely 

* = *. (9) e - ( LI I 2) y s p +  e ( / 2 75 

This demonstrates that through the chiral transformation I,V = e'a'2)y5$ one thus 
gets back the usual boundary conditions on I+V with (Y = 0. However, as we shall see 
later, the crucial point is that the spectrum is not invariant under this chiral transforma- 
tion. (Similar features that arise in the context of the chiral bag models are responsible 
of the appearance of a non-vanishing baryon number [4].) 

The knowledge of the asymptotic behaviour of the density of states p ( E )  can be 
reached through the high-temperature expansion of the partition function 

Z ( p )  = Tr(e-B"2) (10) 

which is related to p ( E )  by a Tauberian theorem [5,6]. 
The evaluation of the asymptotic expansion of Z ( p )  as p + 0 will be performed 

using Seeley's work [2]. Since we have to deal with the elliptic operator 0' rather 
than 0, a second boundary condition (in addition (7)) is needed, and we shall take 

nwezy" D+(x) = y 5  eo?' B+(x) on dM (11) 
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which ensures that 

B2= -g~”(V,+~,-iqA,)(a,+~.-iqA,)+X 
with 

x = ‘ R  - 1‘ 
4 41qe::eXy”, rblF,. 

is Hermitian. 
Now, let us briefly recall Seeley’s heat kernel expansion [2], following the notation 

of [7]. Let DB denote an elliptic operator of order w acting on q-component functions, 
and M a v-dimensional manifold bounded by a smooth boundary aM. The subscript 
B on DB indicates a set of [wq/2] boundary conditions. Since the expansion of 
Tr{e-PDB} involves only geometrical invariants of the manifold M [SI, we can always 
choose to work on 

M={(x,  r ) I x E R ” - ’ , r E R + ) .  

The first step consists in writing a Cauchy relation. 

where r is a contour enclosing all the eigenvalues of DB. We thus now need to find 
the bounded propagator K i  (bounded ‘heat kernel’ for the heat equation): 

which is a solution of the following set of equations: 

(AI - DB)Ai (X ,  Y )  = 6(X - Y )  

B j K t ( X ,  y )  = 0 

V x , y ~  M 

on a M  

j = 1, .  . . , [wq/2]. 

( A  I - DB)yK A (Y ,  Y ’ ) = 6 ( y - y ’ ) 

(AI-DB)yHhg(Y, y ’ )  = o  

Hi(x ,  r )  - o X€R”--’. 

The trick is to write K i =  K A  - H A ,  where K A  is the free propagator on R” 

v y ,  Y ’ E  R” 

and H i  satisfies 

VY, Y ’ E  M 

B j H i ( y , y ’ ) = B j K * ( y , y ’ )  on a M  

r-o3 

As a next step, one introduces the symbols of the above operator. Let u(x ,  r )  be a 
function on which DB acts. Its Fourier transform is then defined by 

For brevity, we set r = xu  and T = 6”. Let a = ( a l ,  . . . , a,) be a multi-index with ai 
non-negative integers and X i  ai = [al. Then, formally, 
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where a , ( x ,  r )  is a set of q x q matrices and 

D:,, = fi (-i 5) a t .  
i = l  

The symbol of the operator D is defined as: 

where 

Seeley’s idea is to find an expansion for the symbols of the propagators K” and Ht: 

where the c-W-j  and the d-,,-, have well defined homogeneity properties: 

‘ - W - J  (x9 r3 p, 6 9  PT9 p w A )  = P - W - j c - W - J  ( x ,  r? 6 9  ‘9 A )  
(27) 

The c and the d are obtained by solving algebraic and ordinary differential equations, 
respectively, which follow from equations (16)-( 19). When these c and d are found, 
one can expand the bounded kernel K ^B in the Cauchy integral and use the change of 
variable (28) to find: 

d-w-j (x, r l P ,  P, 6, PT, P“ ‘A)  = P-’”-’d-w-j(x,  r, 5, 7, A 1. 

A + A I P  (28) 

with 

( x ,  r )  = ~ [ dg-’ [ dT [ ds e i s c - W - j ( x ,  r, 6, 7, -is) 
(277) ” + I  

x 1 dip’  [ ds eis [ dr r n J - W - k ( x ,  r, 6, r, -is) 

and 

r- is a contour enclosing all the singularities of d-w-k  in the lower complex-.r half 
plane. The E terms are associated with the free kernel and the 77 give the boundary 
corrections. Seeley has shown that this expansion provides a good (asymptotic) 
approximation to the short-time (high-temperature) behaviour of Tr{e-PDB}. (Note 
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that the reason for considering symbols of operators rather than operators themselves 
is mainly that the Fourier transform takes partial differential equations into algebraic 
equations, which are easier to handle. For further details on Seeley's work, we refer 
the reader to the papers mentioned above.) 

The terms associated with the free propagator are standard, since they only depend 
on geometrical invariants of the full manifold M. They can be found in [8,9]. Here 
we give the first three terms we shall need: 

& R  
E ,  = o  E 2  = - (a - x). 4i 

E g  = ~ 

(47r) (4T )  "I2 
(33) 

Our main goal is thus to compute the boundary terms for the fermionic billiard. 
We first need the d-2 term. Applying equation (17), one finds [7] 

d-2 = c, e-"'+ c2 eAr 

A(x, 5, A)=[g22(x, O)(g"(X, 0)52-AA)11'2. 

(34) 

where we have set 

(35) 

Furthermore, equation (19) implies that the second term vanishes: C2 = 0. 
The determination of the constant C,  goes through equation (18). It gives 

g22 e-a 
C,(x, 5, 7, A )  = 

2( r2+  A 2 ) ( p  A cosh a -p 5 sinh a) 

(1 -e2")@[+(A-i.re2")@ @eu(A+i r )  
(@ ep (A + ir) ( 1 - e 2 " ) p 5 + ( A e Z " - i r ) @  

Then, using equation (32), we obtain 

J - 2 k  r, 5, s, A) 

- - T 2 2  e-(r+s)' 
A(@ A cosh a -@S sinh a) 

Equation (31) thus leads to 

7r 

x [ ( l  -cosh a)U+ y5(sinh a - ? f e z  y o ) ]  

where we have used elementary Gaussian integrals and the formula 

eis 2 ~ e - ~  m 

where T(x) is the Euler gamma function. 
The first boundary correction to the partition function is therefore 

-Y(cosh (Y - 1) 
Z'"(P) = dx d r  Tr{Tl(x, r)} = 

4- 

(39) 



L40 Letter to the Editor 

where 2’ stands for the perimeter of aM. As Berry and Mondragon pointed out, this 
correction vanishes with the boundary parameter a = O .  Note that the boundary 
contribution (40) is independent both of the shape of the boundary (only the smoothness 
of each connected component of aM is required) and of the external magnetic field. 

In the special case where a = 0, we thus need the second boundary correction to 
the partition function in order to obtain the deviation from the free case. This is not 
necessary in the general case because this correction will give a constant term indepen- 
dent of the energy in the asymptotic expansion of the density of states, which is then 
negligible compared with the first term of (40), of order E”’. 

Following the same procedure as above, we obtain, after some calculations, the 
expression of the second boundary correction term q2: 

where t, and n, are the tangent and inward normal unit vectors on dM respectively. 
K ( x )  is the second fundamental form on aM and y ( x )  is the determinant of the 
induced metric on aM [lo]. 

Thus, the second boundary correction to the partition function is 

Putting all terms together, we obtain the final form of the partition function: 

Using the Gauss-Bonnet theorem: 

[ d2x & R + d s K ( s ) = 2 r,y ( M ) 2 

where x is the Euler characteristic of the manifold M, we find: 

Then from equations (40) and (45) and a Tauberian theorem [5,6], we are led to the 
asymptotic form of the integrated level density N ( E ) :  

( 4ft [(cosh - 1)d-E 
4lr 

a Z 0 :  N ( E ) = 2  --E+ 

a =o: (47) 

Now, x = 2 - 2h - 6, where h is the number of handles of the manifold M and 6 
is the number of connected components of the boundary aM. Thus, for the flat circular 
and ‘Africa-shaped’ billiards, for which x = 1, the integrated density of states is 

N (  E )  = 2 - E -- +0( E-*”)  (ilr :2) (48) 
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in agreement with the numerical result of Berry and Mondragon, up to the factor 2 
which just reflects the fact that we consider the spectrum of B2 rather than B. Our 
result, however, is more general and applies to ZD manifolds with an arbitrary number 
of (smooth) boundaries and handles. 

Up to the order considered here, the asymptotic expansion of Z ( p )  is independent 
of the external field. Dependences with respect to A, appear, e.g., in the bulk 
contribution of order p (or E - ’ ) ,  E ~ ,  which has been computed by Gilkey [SI, and 
quite certainly also in the higher-order boundary contribution which, to our knowledge, 
have not been computed so far for the fermionic billiard. One can, however, conclude 
from the present analysis that the leading contributions to N ( E )  depend only on the 
topology of the billiard and are insensitive to the presence of an external magnetic field. 
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