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LETTER TO THE EDITOR

Heat kernel expansion for fermionic billiards in an external
magnetic field

Michel Antoine, Alain Comtett and Marc Knecht

Division de Physique Théoriquet, Institut de Physique Nucléaire, F-91406, Orsay cedex,
France

Received S June 1989, in final form 14 September 1989

Abstract. Using Seeley’s heat kernel expansion, we compute the asymptotic density of
states of the Dirac operator coupled to a magnetic field on a two-dimensional manifold
with boundary (‘fermionic billiard’). Local boundary conditions compatible with vector
current conservation depend on a free parameter a. Itis shown that the perimeter correction
identically vanishes for @ =0. In that case, the next-order constant term is found to be
proportional to the Euler characteristic of the manifold. These results are independent of
the external magnetic field and of the shape of the billiard, provided the boundary is
sufficiently smooth. For the flat circular billiard, the constant term is found to be —%, in
agreement with a numerical result of Berry and Mondragon.

In a recent work, Berry and Mondragon (1) have considered a Dirac Hamiltonian
describing a massless spin-half particle moving on a finite domain in the plane.
Hard-wall local boundary conditions obtained from the requirement that no current
flows outwards from the billiard imply that the system does not possess time-reversal
symmetry and is thus an interesting model in the context of quantum chaos. In order
to extract the fluctuating part of the spectrum which in this case is shown to be
distributed according to the statistics of the Gaussian unitary ensemble, the authors
provide an explicit expression for the semiclassical integrated density of states. Surpris-
ingly enough, the perimeter correction vanishes in this asymptotic expansion and
numerical calculation suggests that the next-order constant term is —i5. The purpose
of this work is to extend this problem to the more general case of a two-dimensional
curved manifold M bounded by a multiconnected smooth curve 9 M with some possible
coupling to an external magnetic field. In contrast with Berry and Mondragon, who
used the Balian-Bloch formalism, our approach is based on Seeley’s heat kernel
expansion [2].

Let g,, be the metric tensor of the Riemannian manifold M and g=detg,,. At
each point of M, we introduce a zweibein e, such that

elel=g,, gheleb =58 (1)

We consider Euclidean anti-Hermitic gamma matrices that satisfy

{y% y°}=—-286% (y)'=—y~ (2)
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In two dimensions, one representation of these matrices is found in terms of the Pauli’s
o matrices

y'=ig! y'=io? Y’ =iy'y’=0". (3)
The dynamics of the spin-; particle is governed by the Euclidian Dirac equation on M:

y“es D y(x) = Ed(x). @)

The covariant derivative for the spinor D, =9, +I, —igA, takes into account the
curvature of the manifold and the external magnetic field through the spin connection:

Fy. = _%[‘Ya, yb]ea,vvueg (5)
r,=-T!

u i V,.eb=5,e5-T% e} (6)
and through the vector potential A, to which the particle is coupled via its charge g,
respectively.

Hermiticity of P =e®y® D, is guaranteed provided the spinor ¢(x) obeys the
following class of boundary conditions:

ntel v (x) =y’ e y(x) on oM (7)

with « a free real parameter and n* the inward normal vector on M. For a =0, one
recovers the boundary condition considered by Berry and Mondragon [1]. One can
then easily show that the vector current is conserved:

n* (g y%elp) =0 on aM. (8)

The axial symmetry, however, is explicitly broken, even for vanishing external field,
in agreement with a theorem of Atiyah et al [3], which states that preservation of axial
symmetry requires non-local boundary conditions. The same statement holds for
time-reversal symmetry.

Introducing the projector

P,=3(1+v°(yn))
equation (7) can be rewritten in a more transparent way, namely
e—(a/2)75P+e(n/2)75¢,=¢l' (9)

This demonstrates that through the chiral transformation ¢'=e'*/?”"§ one thus
gets back the usual boundary conditions on ¢’ with a« =0. However, as we shall see
later, the crucial point is that the spectrum is not invariant under this chiral transforma-
tion. (Similar features that arise in the context of the chiral bag models are responsible
of the appearance of a non-vanishing baryon number [4].)

The knowledge of the asymptotic behaviour of the density of states p(E) can be
reached through the high-temperature expansion of the partition function

Z(B)=Tr(e ") (10)

which is related to p(E) by a Tauberian theorem [5, 6].

The evaluation of the asymptotic expansion of Z(B8) as B0 will be performed
using Seeley’s work [2]. Since we have to deal with the elliptic operator PB? rather
than P, a second boundary condition (in addition (7)) is needed, and we shall take

n*eny” Bu(x)=7y" e By(x) on oM (11)
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which ensures that

p’=-g*(V,+T,—igA,)(,+T,—igA,)+ X (12)
with

X =iR—iigeteily", v°1F,,
is Hermitian.

Now, let us briefly recall Seeley’s heat kernel expansion [2], following the notation
of [7]). Let Dg denote an elliptic operator of order w acting on g-component functions,
and M a v-dimensional manifold bounded by a smooth boundary § M. The subscript
B on Dy indicates a set of [wg/2] boundary conditions. Since the expansion of

Tr{e #P&} involves only geometrical invariants of the manifold M [8], we can always
choose to work on

M={(x,r)|xeR"", reR").

The first step consists in writing a Cauchy relation.

sp, 1 J e ™
5= — | da 1

where I' is a contour enclosing all the eigenvalues of Dg. We thus now need to find
the bounded propagator K3 (bounded ‘heat kernel’ for the heat equation):

K%(y,y’)5<y‘

A-D, y> (14)

which is a solution of the following set of equations:
(A1-Dg) K3(x,y)=8(x—y) Vx,ye M (15a)
B Ki(x,y)=0 on 6M (15b)
Jj=1,...,[wg/2].

The trick is to write K3 = K" — Hy, where K" is the free propagator on R”

(A1=Dp),K*(y,¥")=8(y —y") Vy, y'eR” (16)
and Hy satisfies

(A1-Dg),Hy(y,y') =0 Vy,y'eM (17)

BHy(y,y")=B,K"(n,y") on aM (18)

Hi(x, r)—r:O xeR”. (19)

As a next step, one introduces the symbols of the above operator. Let u(x, r) be a
function on which Dy acts. Its Fourier transform is then defined by

u(x,r)= (2717)_, J ;™! J dr exp(iéx+irr)d(¢, 7). 20)

For brevity, we set r=x" and r=¢". Let @ =(a,,...,a,) be a multi-index with «,
non-negative integers and X, @; =|a|. Then, formally,

D= Y a,(x D5, (21)

lef=w
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where a,(x, r) is a set of g X ¢ matrices and

v 3 a,
D3, = -i—) . 22
) il;ll ( laxl) (22)
The symbol of the operator D is defined as:
a(D) = ; a.(x, r)(§ 7)° (23)
where
(&) =TI (D) (24)
i=1
Seeley’s idea is to find an expansion for the symbols of the propagators K* and Hj:
O-(K/\)= Z C—m—j(x’ ra g, TsA) (25)
j=0
O'(H%) = Z d—w—j (x, r9 ga 7 A) (26)
j=0

where the c_,_; and the d_,,_; have well defined homogeneity properties:

c—w—j(xy L ga PT, pr) = p_w_jc—w—j(xa T, §9 7, /\) (27)
d-m—j(x’ r/ps P, fa PT, Pw/\) = p-w‘jd—w—j(xy 7 gy 7 A)
The ¢ and the 4 are obtained by solving algebraic and ordinary differential equations,
respectively, which follow from equations (16)-(19). When these ¢ and d are found,
one can expand the bounded kernel K3 in the Cauchy integral and use the change of
variable (28) to find:

A->A/B (28)
(x, rle™5)x, r) Bzy ‘ZO BYT g (x, r)+m;(x, )] (29)
~0* /=

with

g(x, 1) =ﬁj. da;™! J dr J dse“c_,_;(x, & —is) (30)

mnn =g 3 0 (31)
X J' d;™! I dse’ j dre'd_,_i(x, 1, & 1, —is)

and

Aol 1 65,0) = —§ dre™d_, (%167 A). (32)
r.
I'_ is a contour enclosing all the singularities of d_,_, in the lower complex-r half
plane. The ¢ terms are associated with the free kernel and the 7 give the boundary
corrections. Seeley has shown that this expansion provides a good (asymptotic)
approximation to the short-time (high-temperature) behaviour of Tr{e "2}, (Note
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that the reason for considering symbols of operators rather than operators themselves
is mainly that the Fourier transform takes partial differential equations into algebraic
equations, which are easier to handle. For further details on Seeley’s work, we refer
the reader to the papers mentioned above.)

The terms associated with the free propagator are standard, since they only depend
on geometrical invariants of the full manifold M. They can be found in [8,9]. Here
we give the first three terms we shall need:

Vg Vg (R
80=——g—— £,=0 €z=@%ﬁ(g—x>-

(417) v/2 (33)

Our main goal is thus to compute the boundary terms for the fermionic billiard.
We first need the d_, term. Applying equation (17), one finds [7]
d,=c e M+cet (34)
where we have set
Alx, & 2) =[g22(x, 0)(g" (x,00*— 1)]""2. (35)

Furthermore, equation (19) implies that the second term vanishes: C,=0.
The determination of the constant C; goes through equation (18). It gives

23

gne
Cix, & mA)=
' 2(*+ A?)(Vg? Acosha—vg'' ¢sinh a)

x(u—e“)JFng(A—ir e*)/g™ J?e“(/wir)) 36)
Ve e (A+ir) (1-e*Wg"g+(A e —ir)Wg?/
Then, using equation (32), we obtain
d(x,r&s M)
Ty e U
N /\(\/;2—2 A‘cosh a —&“g sinh a)
y (—sinh a(Vg" e+VgPA) J?A) (a7
Jg2A —sinh a(Vg" ¢ FVg?A)/’
Equation (31) thus leads to
m(s =1 25D 5)
(38)

X [(1—cosh a)1+y°(sinh & — n*el y*)]

where we have used elementary Gaussian integrals and the formula

J'°° ds e’ 2me™
o (x+is)"  TI'(n) (39)
where I'(x) is the Euler gamma function.

The first boundary correction to the partition function is therefore

F(cosha—1)
&nB (40)

Z'%p)= JM dx dr Tr{n(x, r)} =
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where ¥ stands for the perimeter of M. As Berry and Mondragon pointed out, this
correction vanishes with the boundary parameter a =0. Note that the boundary
contribution (40) is independent both of the shape of the boundary (only the smoothness
of each connected component of M is required) and of the external magnetic field.

In the special case where a =0, we thus need the second boundary correction to
the partition function in order to obtain the deviation from the free case. This is not
necessary in the general case because this correction will give a constant term indepen-
dent of the energy in the asymptotic expansion of the density of states, which is then
negligible compared with the first term of (40), of order E'/%,

Following the same procedure as above, we obtain, after some calculations, the
expression of the second boundary correction term 7,:

(% r)-—%{—i () yoe™ g, 1°(3,n") (@1)
w

+ ;X)K( )[ﬂ+§2—t“ “7“]}—1—‘Iuv7(x reuy”

where t, and n, are the tangent and inward normal unit vectors on M respectively.
K(x) is the second fundamental form on 4M and y(x) is the determinant of the
induced metric on dM [10].

Thus, the second boundary correction to the partition function is

1
ZZB(B)EJ dx dr Tr n,(x, r)=-——I ds K(s). (42)
M 27 Jom
Putting all terms together, we obtain the final form of the partition function:
¢ 1 /1
Z(B)=——————-——(—I d2xJ§R+I dsK(s)>+O(«/E). (43)
27B 127 \2 )pm aM
Using the Gauss-Bonnet theorem:
1
Ejdzx@R+J ds K(s)=2mx(M) (44)
oM
where x is the Euler characteristic of the manifold M, we find:
¢ x(M ))
z 2 +
8)-2 (75 -2 0w (#9)

Then from equations (40) and (45) and a Tauberian theorem [5, 6], we are led to the
asymptotic form of the integrated level density N(E):

a # 0 N(E)=2 (Z%E+((°°Sh:;1)m> +0(1) (46)
a=0: N(E)=2(ﬁE—X(II;I))+O<\/1F) (47)

Now, x =2-2h—b, where h is the number of handles of the manifold M and b
is the number of connected components of the boundary M. Thus, for the flat circular
and ‘Africa-shaped’ billiards, for which y =1, the integrated density of states is

N(E)= 2( ¢ E—E)+O(E"/2) (48)
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in agreement with the numerical result of Berry and Mondragon, up to the factor 2
which just reflects the fact that we consider the spectrum of B’ rather than B. Our
result, however, is more general and applies to 2D manifolds with an arbitrary number
of (smooth) boundaries and handles.

Up to the order considered here, the asymptotic expansion of Z(8) is independent
of the external field. Dependences with respect to A, appear, e.g., in the bulk
contribution of order 8 (or E'), 4, which has been computed by Gilkey [8], and
quite certainly also in the higher-order boundary contribution which, to our knowledge,
have not been computed so far for the fermionic billiard. One can, however, conclude
from the present analysis that the leading contributions to N(E) depend only on the
topology of the billiard and are insensitive to the presence of an external magnetic field.
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